Page 124 - 09-Lisovyy
P. 124
DOI: https://doi.org/10.15414/2020.9788055222752
Николай Лесовой, Дина Лисогурская, Леонора Адамчук ‒
Продуценты пади и характеристика падевого мёда
Jaafar, K., Haidar, J., Kuraydiyyah, S., Ghaddar, T., Knio, K., Ismail, B., Toufeili, I.
Physicochemical, melissopalynological and antioxidant properties of artisanal
honeys from Lebanon. Journal of Food Science and Technology, 2017. 54(8). 2296–
2305. https://doi.org/10.1007/s13197-017-2667-8.
Jara-Palacios, M. J., Ávila, F. J., Escudero-Gilete, M. L., Pajuelo, A. G., Heredia, F. J.,
Hernanz, D., Terrab, А. Physicochemical properties, colour, chemical composition,
and antioxidant activity of Spanish Quercus honeydew honeys. European Food
Research and Technology. 2019. 245. 2017–2026. https://doi.org/10.1007/s00217-
019-03316-x.
Kadri, S. M., Zaluski, R., Orsi, R. dе O. Nutritional and mineral contents of honey extracted
by centrifugation and presed processes. Food Chemistry, 2017. 218. 237–241.
https://doi.org/10.1016/j.foodchem.2016.09.071.
Karabagias, I. K., Dimitriou, E., Kontakos, S., Kontominas, M. G. Phenolic profile, colour
intensity, and radical scavenging activity of Greek unifloral honeys. European Food
Research and Technology, 2016. 242(8). 1201–1210.
https://doi.org/10.1007/s00217-015-2624-6.
Karabagias, I. K., Vlasiou, M., Kontakos, S., Drouza, C., Kontominas, M. G., Keramidas, A. D.
Geographical discrimination of pine and fir honeys using multivariate analyses of
major and minor honey components identified by 1H NMR and HPLC along with
physicochemical data. European Food Research and Technology, 2018. 244(7).
1249–1259. https://doi.org/10.1007/s00217-018-3040-5.
Kaygusuz, H., Tezcan, F., Erim, F. B, Yildiz, O., Sahin, H., Can, Z., Kolayli, S. Characterization
of Anatolian honeys based on minerals, bioactive components and principal
component analysis. LWT – Food Sci Technol. 2016. 68. 273–279.
https://doi.org/10.1016/j.lwt.2015.12.005.
Korkmaz, S. D., Kuplulu, О., Cil, G. I., Akyuz, Е. Detection of sulfonamide and tetracycline
antibiotic residues in Turkish pine honey. International Journal of Food Properties.
2017. 20. 50–55. https://doi.org/10.1080/10942912.2017.1288135.
Matović, K., Ćirić, J., Kaljević, V., Nedić, N., Jevtić, G., Vasković, N., Baltić, M. Ž.
Physicochemical parameters and microbiological status of honey produced in an
urban environment in Serbia. Environmental Science and Pollution Research, 2018.
25(14). 14148–14157. https://doi.org/10.1007/s11356-018-1659-1.
Minelli, M., Segura, A., Bonetti, A., Dinelli, G., Fernandez, A. Direct determination of
aliphatic acids in honey by coelectroosmotic capillary zone electrophoresis. Journal
of Apicultural Research, 2005. 44(2). 65–70.
https://doi.org/10.1080/00218839.2005.11101151.
Mračevića, S. D., Krstića, М., Lolićb, А., Ražića, S. Comparative study of the chemical
composition and biological potential of honey from different regions of Serbia.
Microchemical Journal. 2020. 152. 1–9.
https://doi.org/10.1016/j.microc.2019.104420.
Mura-Mészáros, А., Magyar, D. Fungal Honeydew Elements as Potential Indicators of the
Botanical and Geographical Origin of Honeys. Food analytical methods, 2017. 10.
3079–3087. https://doi.org/10.1007/s12161-017-0862-x.
Nayik, G. A., Nanda, V. Physico-chemical, enzymatic, mineral and colour characterization
of three different varieties of honeys from Kashmir Valley of India with a
multivariate approach. Polish Journal of Food and Nutrition Sciences, 2015. 65(2).
101–108. https://doi.org/10.1515/pjfns-2015-0022.
Nolan, V. C., Harrison, J., Cox, J. A. G. Dissecting the Antimicrobial Composition of Honey.
Antibiotics. 2019. 8(251). 1–16. https://doi.org/10.3390/antibiotics8040251.
124